
Buffer Overflow 



Buffer Overflow
 Single biggest software security threat – the buffer overflow
 The most common form of security vulnerability till 2005 or so.
 Buffer overflow vulnerabilities dominate in the area of remote network 

penetration vulnerabilities
 Some statistics: Buffer overflow problems as % of CERT alerts

Buffer Overflow Problems

0%

10%

20%

30%

40%

50%

60%

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
Year

 %
 e Series1



What is buffer overflow?
 Buffers in C/C++ program:

 Heap: the kind of data when you call “malloc()” or “new”
 Stack: non-static local variables and function parameters, e.g.

int func( ) {
char buf[12]; // a buffer of 12 bytes

… 
 Buffer overflow:

 Store more data in the buffer (heap or stack) than it can hold
 The next contiguous chunk of memory is overwritten

 Why in C/C++ language?
 C/C++ language is inherently unsafe, i.e. it allows programs to 

overflow buffers at will
 No runtime checks that prevent writing past the end of a buffer, 

e.g.
strcpy(buf, “this string takes 27 bytes”);   // copy 27 bytes to 12 

bytes buffer



Technical Principles of 
Buffer Overflow



CPU

How a Computer executes a Program

 PC: Program Counter
Store the Address of Next instruction

 Registers
 Fast circuits to hold for Heavily used program 

data
 Condition codes

Store status information about most recent 
arithmetic or logical operation

Used for conditional branching 
• IF-THEN-ELSE

PC

Registers

Memory

A Program
Code

Data

Heap

Stack

Addresses

Data

Instructions
Condition
Codes

Memory
Byte addressable array
Code: Instructions for the 

machine
Data for the program
Heap: for dynamic data 

storage
Stack to support “function”

calls



Processes (Running Programs) in the 
Computer Memory



A Process in Memory
 Code (aka the Text segment) :  

 Program code; 
 marked read-only, so any 

attempts to write to it will result 
in segmentation fault

 Data segment: 
 Global and static variables, 

constants ;
 Heap: 

 Dynamic storage space allocated via 
via malloc( ), new( ) ; 

 Stack:  
 also for storing Dynamic variables
 Key data structure for implementing 

Function Calls !!

e.g. 
000000

e.g.

FFFFFF



Mechanisms to Call a 
Function (aka subroutine/ procedure) within 

a Program
 Passing control (back and forth)

 Jump to beginning of the function code 
(i.e. the starting address of f1() )

 Jump Back to return point upon 
completion of function

 Passing data (back and forth)
 Function arguments (i.e. a,b)
 Return value (i.e. buffer1[t])

 Memory management
 Allocate local storage (i.e. t, 
buffer1[32]) during function execution

 De-allocate those memory upon 
completion of function

 Mechanisms all implemented with machine 
instructions by storing required info in the 
Stack

main(…) {
•
a = input by user
b = input by user
y = f1(a,b);
print(y)
•

}  

int f1(int i,int j)
{
int buffer1[32];

int t = 3*i*j; 
•
•
return buffer1[t];

}



What Info do we need to call a Function ?

 Values of Arguments Input to the Function (i.e. a, b for f1( ) )
 Address to Return to when the Function call is completed
 Memory space for Local (Function) Variables (i.e. for buffer1[32])
 Way to Restore (clean-up) the Stack so that it looks the same as 

before the Function call
 Starting Address of the Function (f1)’s code

int f1(int a, int b){
int buffer1[32] ; 

codes for the function ….
…………………..       

}



How to call a function f1(arg1, arg2) ?

Func args

Return addr

Saved frame ptr

Local var
ebp

Func args

Return addr

Saved frame ptr

Local var

arg1, arg2

Return addr

Saved frame ptr

Local var (buf)
ebp

(1) push arg1, arg2 (i.e. a and b) into 
the Stack (before calling)

(2) Push return addr and 

old basepointer (ebp) to stack

(3) Set new basepointer for the current 
frame

(4) Allocate space for local variables
(5) Jump to execute f1 by pushing its 

starting address into the PC

Before f1( )  is called When f1( ) is being called 



Stack Basics
 A stack consists of logical stack frames that 

are pushed when calling a function and 
popped when returning. 
 Base (frame) pointer – points to a fixed 

location within a frame.
 When a function is called, the function 

arguments, the return address, stack frame 
pointer and the variables are pushed on the 
stack (in that order). 

 So the return address has a higher address 
than the Local Variables buffer section. 

 When we overflow the buffer (of the Local 
variables section), the return address will be 
overwritten.



How does the Stack look like after
several Nested Function Calls ? 



Two Required Tasks to realize  
a Security Attack (i.e. a system break-in)

1. Inject the attack code, which is typically a small 
sequence of instructions that do bad things (e.g. 
spawns a command shell into a running process.)

2. Change the execution path of the running process 
to execute the attack code.

 Overflowing the Stack buffer can achieve both 
objectives  simultaneously.



(i)  Before the attack (ii)  after injecting the attack code 

What happens when the Buffer is overflown ? 



How can we place arbitrary instruction into its 
address space?

 First, place the ”shellcode” that you are trying to 
execute in the buffer we are overflowing

 Then, overwrite the return address so it points 
back into the ”shellcode” in the buffer.



Stack layout for a Vulnerable Progam, 
e.g. main( ) in the previous slide

Lower Higher 
Mem. addr. Mem. Addr. 

buffer2      buffer1   sfp ret    a     b     c
<------ [                ][            ][   ][   ][    ][    ][    ] 

Top of stack Bottom of 
stack 



Lower  Higher
Mem. Addr. Mem. Addr.

DDDDDDDEEEEEEEEEEEE   EEEE   FFFF    FFFF   FFFF   FFFF
89ABCDEF0123456789AB   CDEF  0123   4567   89AB  CDEF 
buffer sfp     ret       a        b         

<---- […….Filled with Attack code…….…..][0xD8][0x01][0x02] 

top of bottom of 
stack stack

After Buffer-flow,  the stack looks like:



Sample Shellcode.c

#include<stdio.h> 
void main() { 

char *name[2]; 
name[0] = "/bin/sh"; 
name[1] = NULL; 
execve(name[0], name, NULL); 

}



vulnerable.c

void main(int argc, char *argv[ ]) {    
char buffer[512]; 
if (argc > 1)

strcpy(buffer,argv[1]); 
} 



How to defend against Buffer Overflow
 Write Secure Code

 Instead of using “dangerous” functions/system calls, e.g. scanf( ), strcpy( 
), strcat( ), getwd( ), gets( ), strcmp( ), sprintf( ). , use their “safe” 
counterparts: strncpy, strncmp etc.

 Perform Security-Focused Code Review
 Use other security checking-tools which will guard against array-boundary-

overflow at run-time
 Operating Systems to Support of Non-executable-Stack Features, e.g. 

Windows’ Data Execution Protection (DEP) mode
 Attackers respond by inventing Return-to-libc and 

 Defenders respond with Address Space Layout Randomization 
(ASLR)…

 Hackers then invent Return-Oriented-Programming (ROP) attacks as 
well as side-channel attacks to circumvent ASLR

As of today, there is still  an Ongoing Arm Race between the attackers and 
defenders



Additional References

 http://insecure.org/stf/smashstack.html
 http://www.ece.cmu.edu/%7Eadrian/630-f04/readings/cowan-

vulnerability.pdf

http://insecure.org/stf/smashstack.html


Backup Slides

Defenses against Stack Buffer Overflow

Source: Profs. Dan Boneh, John Mitchell
Stanford University



Preventing Buffer Overflow attacks

1. Fix bugs:
 Audit software

 Automated tools:   Coverity,  Prefast/Prefix. 
 Rewrite software in a type safe language  (Java, ML)

 Difficult for existing (legacy) code …

2. Concede overflow,  but prevent code execution

3. Add runtime code to detect overflows exploits
 Halt process when overflow exploit detected
 StackGuard,  LibSafe, …



Marking memory as non-executable

 Prevent overflow code execution by marking 
stack and heap segments as non-executable

 NX-bit on AMD Athlon 64,     XD-bit on Intel P4  

 NX bit in every Page Table Entry (PTE)

 Deployment: 
Linux (via PaX project);    OpenBSD
Windows since XP SP2    (DEP = Data Execution Prevention)
 Boot.ini :        /noexecute=OptIn   or AlwaysOn

 Limitations:
 Some apps need executable heap   (e.g. JIT = Just-In-Time compiler).
 Does not defend against `return-to-libc’ exploit



Examples:   DEP controls in Windows OSes

DEP terminating a program



Return-to-libc Attacks

 Control hijacking without executing code

args
ret-addr

sfp

local buf

stack

exec()
printf()

“/bin/sh”

libc.so

Func args

Return addr

Saved frame ptr

Local var

fake return addr

Get a remote shell 
without inject any 

code



Response:   Randomization

 ASLR:       (Address Space Layout Randomization)
 Map shared libraries to rand location in process memory

=>   Attacker cannot jump directly to exec function

 Deployment: 
 Windows Vista: 8 bits of randomness for DLLs

• aligned to 64K page in a 16MB region   Þ 256 choices
 Linux (via PaX): 16 bits of randomness for libraries

 More effective on  64-bit architectures

 Other randomization methods:
 Sys-call randomization:    randomize sys-call id’s



ASLR Example

Booting Windows 7 twice loads libraries into different locations:

Note: ASLR is only applied to images for which the 
dynamic-relocation flag is set



Run time checking: StackGuard
 Many many run-time checking techniques …

 we only discuss methods relevant to overflow protection
 Solution 1:  StackGuard

 Run time tests for stack integrity. 
 Embed “canaries” in stack frames and verify their 

integrity prior to function return.
Real-world Examples taken similar approach:
 ProPolice (IBM)    - gcc 3.4.1.      (the -fstack-protector option)
 MS Visual Stdio compiler: the  /GS option

strretsfplocal
top
of

stackcanarystrretsfplocal canary

Frame 1Frame 2



Run time checking: Libsafe

 Solution 2:  Libsafe (Avaya Labs)
 Dynamically loaded library      (no need to recompile app.)
 Intercepts calls to  strcpy (dest, src)

 Validates sufficient space in current stack frame:
 If so, does strcpy,   

otherwise, terminates application

destret-addrsfp
top
of

stack
src buf ret-addrsfp

libsafe main



Other Buffer Overflow Attacks



Integer Overflow attacks

 Integer overflows:    (e.g.  MS DirectX MIDI Lib)     Phrack60

void func(int a, char v) {
char buf[128];
init(buf);
buf[a] = v;

}

 Problem:   Attacker can make a point to `ret-addr’ on stack and 
then overwrite it with input v.



Sometimes, you don’t really need to 
“Overflow” the buffer to launch an

Overflow Attack

Source: https://xkcd.com/1354



0

20

40

60

80

100

120

140

1996 1998 2000 2002 2004 2006

Source:  NVD/CVE

Integer overflow stats



Format String Vulnerabilities
int func(char *user)  {
fprintf( stdout, user);

}

Problem:   what if   user = “%s%s%s%s%s%s%s” ??
 Most likely program will crash:   DoS.
 If not, program will print memory contents.  Privacy?
 Full exploit using   user = “%n” (Writes the number of characters 

into a pointer)

Correct form:
int func(char *user)  {
fprintf( stdout, “%s”, user);

}

See:http://julianor.tripod.com/bc/formatstring-1.2.pdf  for details



Heap Overflow
 Buffer can also appear in heap area, like: buff=(char*) malloc(256)
 Heap can be overflowed, just like stacks
 One attack on compiler generated function pointers   (e.g.  C++ code)

 Suppose   vtable   is on the heap next to a string object:

ptr

data

Object  T

FP1
FP2
FP3

vtable

method #1
method #2
method #3

pt
rbuf[256]

da
ta

object T

vtable



Heap Overflow (cont’d)
 Compiler generated function pointers   (e.g.  C++ code)

 After Overflow, we have:

ptr

data

Object  T

FP1
FP2
FP3

vtable

method #1
method #2
method #3

Object  T

pt
rbuf[256]

da
ta

object T

vtable

shell
code



Heap Spraying     
[SkyLined 2004]

Idea: 1. use Javascript to spray heap 
with shellcode  (and NOP slides)

2. then point vtable ptr anywhere in spray area

heap

vtable

NOP  slide shellcode

heap spray area



Javascript heap spraying

var  nop = unescape(“%u9090%u9090”)
while (nop.length < 0x100000)  nop += nop

var shellcode = unescape("%u4343%u4343%...");

var x = new Array ()
for (i=0;  i<1000;  i++) {

x[i] = nop + shellcode;
}

 Pointing  func-ptr  almost anywhere in heap will 
cause shellcode to execute.



Many heap spray exploits

 Improvements:     Heap Feng Shui  [S’07]
 Reliable heap exploits on IE without spraying
 Gives attacker full control of  IE heap  from Javascript

[RLZ’08]



References on Heap Spraying

[1] Heap Feng Shui in Javascript,
by A. Sotirov,     Blackhat Europe 2007

[2] Engineering Heap Overflow Exploits with 
JavaScript
M. Daniel, J. Honoroff, and C. Miller,    WooT 2008

[3] Nozzle: A Defense Against Heap-spraying Code
Injection Attacks,
by P. Ratanaworabhan, B. Livshits, and B. Zorn


